TY - JOUR
T1 - Capacity of capsazepinoids to relax human small airways and inhibit TLR3-induced TSLP and IFNβ production in diseased bronchial epithelial cells.
AU - Mahmutovic Persson, Irma
AU - Johansson, Martin
AU - Brandelius, Angelica
AU - Calvén, Jenny
AU - Bjermer, Leif
AU - Yudina, Yuliana
AU - Uller, Lena
PY - 2012
Y1 - 2012
N2 - Thymic stromal lymphopoietin (TSLP), an immunomodulating potentially disease-inducing cytokine, is overproduced in TLR3-stimulated bronchial epithelial cells from asthmatic donors whereas production of antiviral IFNβ is deficient. It is of therapeutic interest that capsazepine inhibits epithelial TSLP and relaxes human small airways with similar potencies. However, it is not known if other capsazepine-like compounds share such dual actions. This study explores epithelial anti-TSLP and anti-IFNβ effects of capsazepine and novel capsazepine-like bronchorelaxants. We used primary bronchial epithelial cells from asthmatic and chronic obstructive pulmonary disease (COPD) donors, and human small airways dissected from surgically removed lungs. Seven novel capsazepinoids were about 10 times, and one compound (RES187) >30 times, more potent than capsazepine as relaxants of LTD(4)-contracted small airways. TLR3-induced TSLP, TNFα, CXCL8, and IFNβ mRNA and protein levels were dose-dependently and non-selectively inhibited by capsazepine, equally in cells from asthmatic and COPD donors. The novel compounds, except RES187, reduced TSLP and IFNβ but none are more potent than capsazepine. Only capsazepine consistently inhibited TNFα and CXCL8 production and attenuated TLR3-induced epithelial NF-κB signalling. Hence, the present compounds did not separate between inhibition of TLR3-induced epithelial TSLP and IFNβ, but all compounds, except capsazepine, did separate between the bronchorelaxant and the epithelial immune effects. We conclude that similar mechanisms may be involved in capsazepine-like inhibition of TLR3-induced epithelial TSLP and IFNβ and that these are distinct from mechanisms involved in relaxation of small airways by these compounds.
AB - Thymic stromal lymphopoietin (TSLP), an immunomodulating potentially disease-inducing cytokine, is overproduced in TLR3-stimulated bronchial epithelial cells from asthmatic donors whereas production of antiviral IFNβ is deficient. It is of therapeutic interest that capsazepine inhibits epithelial TSLP and relaxes human small airways with similar potencies. However, it is not known if other capsazepine-like compounds share such dual actions. This study explores epithelial anti-TSLP and anti-IFNβ effects of capsazepine and novel capsazepine-like bronchorelaxants. We used primary bronchial epithelial cells from asthmatic and chronic obstructive pulmonary disease (COPD) donors, and human small airways dissected from surgically removed lungs. Seven novel capsazepinoids were about 10 times, and one compound (RES187) >30 times, more potent than capsazepine as relaxants of LTD(4)-contracted small airways. TLR3-induced TSLP, TNFα, CXCL8, and IFNβ mRNA and protein levels were dose-dependently and non-selectively inhibited by capsazepine, equally in cells from asthmatic and COPD donors. The novel compounds, except RES187, reduced TSLP and IFNβ but none are more potent than capsazepine. Only capsazepine consistently inhibited TNFα and CXCL8 production and attenuated TLR3-induced epithelial NF-κB signalling. Hence, the present compounds did not separate between inhibition of TLR3-induced epithelial TSLP and IFNβ, but all compounds, except capsazepine, did separate between the bronchorelaxant and the epithelial immune effects. We conclude that similar mechanisms may be involved in capsazepine-like inhibition of TLR3-induced epithelial TSLP and IFNβ and that these are distinct from mechanisms involved in relaxation of small airways by these compounds.
KW - Innate
KW - Inflammatory mediator
KW - Cytokines
KW - TSLP
KW - Asthma
KW - COPD
U2 - 10.1016/j.intimp.2012.04.007
DO - 10.1016/j.intimp.2012.04.007
M3 - Article
C2 - 22543056
SN - 1878-1705
VL - 13
SP - 292
EP - 300
JO - International Immunopharmacology
JF - International Immunopharmacology
IS - 3
ER -