TY - JOUR
T1 - CD163+ macrophages in mantle cell lymphoma induce activation of prosurvival pathways and immune suppression
AU - de Matos Rodrigues, Joana
AU - Lokhande, Lavanya
AU - Olsson, Lina M
AU - Hassan, May
AU - Johansson, Angelica
AU - Janská, Anna
AU - Kumar, Darshan
AU - Schmidt, Lina
AU - Nikkarinen, Anna
AU - Hollander, Peter
AU - Glimelius, Ingrid
AU - Porwit, Anna
AU - Gerdtsson, Anna Sandstrom
AU - Jerkeman, Mats
AU - Ek, Sara
N1 - © 2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.
PY - 2024/8/27
Y1 - 2024/8/27
N2 - Mantle cell lymphoma (MCL) is dependent on a supportive tumor immune microenvironment (TIME) in which infiltration of CD163+ macrophages has a negative prognostic impact. This study explores how abundance and spatial localization of CD163+ cells are associated with the biology of MCL, using spatial multiomic investigations of tumor and infiltrating CD163+ and CD3+ cells. A total of 63 proteins were measured using GeoMx digital spatial profiling in tissue microarrays from 100 diagnostic MCL tissues. Regions of interest were selected in tumor-rich and tumor-sparse tissue regions. Molecular profiling of CD163+ macrophages, CD20+ MCL cells, and CD3+ T-cells was performed. To validate protein profiles, 1811 messenger RNAs were measured in CD20+ cells and 2 subsets of T cells. Image analysis was used to extract the phenotype and position of each targeted cell, thereby allowing the exploration of cell frequencies and cellular neighborhoods. Proteomic investigations revealed that CD163+ cells modulate their immune profile depending on their localization and that the immune inhibitory molecules, V-domain immunoglobulin suppressor of T-cell activation and B7 homolog 3, have higher expression in tumor-sparse than in tumor-rich tissue regions and that targeting should be explored. We showed that MCL tissues with more abundant infiltration of CD163+ cells have a higher proteomic and transcriptional expression of key components of the MAPK pathway. Thus, the MAPK pathway may be a feasible therapeutic target in patients with MCL with CD163+ cell infiltration. We further showed the independent and combined prognostic values of CD11c and CD163 beyond established risk factors.
AB - Mantle cell lymphoma (MCL) is dependent on a supportive tumor immune microenvironment (TIME) in which infiltration of CD163+ macrophages has a negative prognostic impact. This study explores how abundance and spatial localization of CD163+ cells are associated with the biology of MCL, using spatial multiomic investigations of tumor and infiltrating CD163+ and CD3+ cells. A total of 63 proteins were measured using GeoMx digital spatial profiling in tissue microarrays from 100 diagnostic MCL tissues. Regions of interest were selected in tumor-rich and tumor-sparse tissue regions. Molecular profiling of CD163+ macrophages, CD20+ MCL cells, and CD3+ T-cells was performed. To validate protein profiles, 1811 messenger RNAs were measured in CD20+ cells and 2 subsets of T cells. Image analysis was used to extract the phenotype and position of each targeted cell, thereby allowing the exploration of cell frequencies and cellular neighborhoods. Proteomic investigations revealed that CD163+ cells modulate their immune profile depending on their localization and that the immune inhibitory molecules, V-domain immunoglobulin suppressor of T-cell activation and B7 homolog 3, have higher expression in tumor-sparse than in tumor-rich tissue regions and that targeting should be explored. We showed that MCL tissues with more abundant infiltration of CD163+ cells have a higher proteomic and transcriptional expression of key components of the MAPK pathway. Thus, the MAPK pathway may be a feasible therapeutic target in patients with MCL with CD163+ cell infiltration. We further showed the independent and combined prognostic values of CD11c and CD163 beyond established risk factors.
KW - Humans
KW - Lymphoma, Mantle-Cell/immunology
KW - Receptors, Cell Surface/metabolism
KW - Antigens, Differentiation, Myelomonocytic/metabolism
KW - Macrophages/metabolism
KW - Antigens, CD/metabolism
KW - Tumor Microenvironment/immunology
KW - Signal Transduction
U2 - 10.1182/bloodadvances.2023012039
DO - 10.1182/bloodadvances.2023012039
M3 - Article
C2 - 38959399
SN - 2473-9529
VL - 8
SP - 4370
EP - 4385
JO - Blood Advances
JF - Blood Advances
IS - 16
ER -