Chaotic resonant dynamics and exchanges of energy in Hamiltonian PDEs

Filippo Giuliani, Marcel Guardia, Pau Martin, Stefano Pasquali

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The aim of this note is to present the recent results in [16] where we provide the existence of solutions of some nonlinear resonant PDEs on T2 exchanging energy among Fourier modes in a "chaotic-like" way. We say that a transition of energy is "chaotic-like" if either the choice of activated modes or the time spent in each transfer can be chosen randomly. We consider the nonlinear cubic Wave, the Hartree and the nonlinear cubic Beam equations. The key point of the construction of the special solutions is the existence of heteroclinic connections between invariant objects and the construction of symbolic dynamics (a Smale horseshoe) for the Birkho. Normal Form of those equations.

Originalspråkengelska
Sidor (från-till)149-166
Antal sidor18
TidskriftAtti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni
Volym32
Nummer1
DOI
StatusPublished - 2021 apr.

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Chaotic resonant dynamics and exchanges of energy in Hamiltonian PDEs”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här