Characterizing the Structure Tensor Using Gamma Distributions

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

237 Nedladdningar (Pure)

Sammanfattning

The structure tensor is a powerful tool describing the local intensity structure of an image or image sequence. In this paper we give a model for the noise distribution of the components of the tensor. In order to do so we have also investigated some properties of the gamma distribution. We show that, given an input image corrupted with Gaussian noise, the noise in the structure tensor can be modeled well by gamma distributions. We apply our model to automatic contrast enhancement of images taken under poor illumination. We show how our noise model can be used for automatic parameter selection in the filtering process, giving powerful results without the need for cumbersome parameter tuning.
Originalspråkengelska
Titel på värdpublikation Pattern Recognition (ICPR), 2016 23rd International Conference on
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor763-768
Antal sidor6
ISBN (elektroniskt)978-1-5090-4847-2
DOI
StatusPublished - 2017 apr. 24
Evenemang2016 23rd International Conference on Pattern Recognition (ICPR 2016) - Cancún Center, Cancún, Mexiko
Varaktighet: 2016 dec. 42016 dec. 8
http://www.icpr2016.org/site/

Konferens

Konferens2016 23rd International Conference on Pattern Recognition (ICPR 2016)
Förkortad titelICPR 2016
Land/TerritoriumMexiko
OrtCancún
Period2016/12/042016/12/08
Internetadress

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik
  • Signalbehandling
  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”Characterizing the Structure Tensor Using Gamma Distributions”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här