Forskningsoutput per år
Forskningsoutput per år
Johan Brynolfsson, Maria Sandsten
Forskningsoutput: Kapitel i bok/rapport/Conference proceeding › Konferenspaper i proceeding › Peer review
In this paper we argue that the Wigner-Ville distribution (WVD), instead of the spectrogram, should be used as basic input into convolutional neural network (CNN) based classification schemes. The WVD has superior resolution and localization as compared to other time-frequency representations. We present a method where a large-size kernel may be learned from the data, to enhance features important for classification. We back up our claims with theory, as well as application on simulated examples and show superior performance as compared to the commonly used spectrogram.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | 25th European Signal Processing Conference, EUSIPCO 2017 |
Förlag | IEEE - Institute of Electrical and Electronics Engineers Inc. |
Sidor | 326-330 |
Antal sidor | 5 |
ISBN (elektroniskt) | 9780992862671 |
DOI | |
Status | Published - 2017 okt. 23 |
Evenemang | 25th European Signal Processing Conference, EUSIPCO 2017 - Kos island, Kos, Grekland Varaktighet: 2017 aug. 28 → 2017 sep. 2 |
Konferens | 25th European Signal Processing Conference, EUSIPCO 2017 |
---|---|
Land/Territorium | Grekland |
Ort | Kos |
Period | 2017/08/28 → 2017/09/02 |
Forskningsoutput: Avhandling › Doktorsavhandling (sammanläggning)