Classification of one-dimensional non-stationary signals using the Wigner-Ville distribution in convolutional neural networks

Johan Brynolfsson, Maria Sandsten

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

In this paper we argue that the Wigner-Ville distribution (WVD), instead of the spectrogram, should be used as basic input into convolutional neural network (CNN) based classification schemes. The WVD has superior resolution and localization as compared to other time-frequency representations. We present a method where a large-size kernel may be learned from the data, to enhance features important for classification. We back up our claims with theory, as well as application on simulated examples and show superior performance as compared to the commonly used spectrogram.

Originalspråkengelska
Titel på värdpublikation25th European Signal Processing Conference, EUSIPCO 2017
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor326-330
Antal sidor5
ISBN (elektroniskt)9780992862671
DOI
StatusPublished - 2017 okt. 23
Evenemang25th European Signal Processing Conference, EUSIPCO 2017 - Kos island, Kos, Grekland
Varaktighet: 2017 aug. 282017 sep. 2

Konferens

Konferens25th European Signal Processing Conference, EUSIPCO 2017
Land/TerritoriumGrekland
OrtKos
Period2017/08/282017/09/02

Ämnesklassifikation (UKÄ)

  • Signalbehandling

Fingeravtryck

Utforska forskningsämnen för ”Classification of one-dimensional non-stationary signals using the Wigner-Ville distribution in convolutional neural networks”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här