Classifying ovarian tumors using Bayesian Multi-Layer Perceptrons and Automatic Relevance Determination: A multi-center study

B Van Calster, D Timmerman, I T Nabney, Lil Valentin, C Van Holsbeke, S Van Huffel

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Ovarian masses are common and a good pre-surgical assessment of their nature is important for adequate treatment. Bayesian Multi-Layer Perceptrons (MLPs) using the evidence procedure were used to predict whether tumors are malignant or not. Automatic Relevance Determination (ARD) is used to select the most relevant of the 40+ available variables. Cross-validation is used to select an optimal combination of input set and number of hidden neurons. The data set consists of 1066 tumors collected at nine centers across Europe. Results indicate good performance of the models with AUC values of 0.93-0.94 on independent data. A comparison with a Bayesian perceptron model shows that the present problem is to a large extent linearly separable. The analyses further show that the number of hidden neurons specified in the ARD analyses for input selection may influence model performance.
Originalspråkengelska
Titel på värdpublikationEngineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor5342-5345
Antal sidor3
Volym1
DOI
StatusPublished - 2006

Publikationsserier

Namn
Volym1
ISSN (tryckt)1557-170X

Ämnesklassifikation (UKÄ)

  • Reproduktionsmedicin och gynekologi

Fingeravtryck

Utforska forskningsämnen för ”Classifying ovarian tumors using Bayesian Multi-Layer Perceptrons and Automatic Relevance Determination: A multi-center study”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här