Clique is hard on average for regular resolution

Albert Atserias, Ilario Bonacina, Susanna F. De Rezende, Massimo Lauria, Jakob Nordström, Alexander Razborov

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We prove that for k ≪ 4 n regular resolution requires length nΩ(k) to establish that an Erdős–Rényi graph with appropriately chosen edge density does not contain a k-clique. This lower bound is optimal up to the multiplicative constant in the exponent, and also implies unconditional nΩ(k) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.

Originalspråkengelska
Titel på värdpublikationSTOC 2018 - Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
RedaktörerMonika Henzinger, David Kempe, Ilias Diakonikolas
FörlagAssociation for Computing Machinery (ACM)
Sidor646-659
Antal sidor14
ISBN (elektroniskt)9781450355599
DOI
StatusPublished - 2018 juni 20
Externt publiceradJa
Evenemang50th Annual ACM Symposium on Theory of Computing, STOC 2018 - Los Angeles, USA
Varaktighet: 2018 juni 252018 juni 29

Publikationsserier

NamnProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (tryckt)0737-8017

Konferens

Konferens50th Annual ACM Symposium on Theory of Computing, STOC 2018
Land/TerritoriumUSA
OrtLos Angeles
Period2018/06/252018/06/29

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Clique is hard on average for regular resolution”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här