Clique Is Hard on Average for Regular Resolution

Albert Atserias, Ilario Bonacina, Susanna F. De Rezende, Massimo Lauria, Jakob Nordström, Alexander Razborov

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We prove that for k ≫; 4√n regular resolution requires length nω(k) to establish that an ErdÅ's-Rényi graph with appropriately chosen edge density does not contain a k-clique. This lower bound is optimal up to the multiplicative constant in the exponent and also implies unconditional nω(k) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.

Originalspråkengelska
Artikelnummer23
Sidor (från-till)1-26
TidskriftJournal of the ACM
Volym68
Nummer4
DOI
StatusPublished - 2021 aug.

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)
  • Diskret matematik

Fingeravtryck

Utforska forskningsämnen för ”Clique Is Hard on Average for Regular Resolution”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här