Sammanfattning
We prove that for k ≫; 4√n regular resolution requires length nω(k) to establish that an ErdÅ's-Rényi graph with appropriately chosen edge density does not contain a k-clique. This lower bound is optimal up to the multiplicative constant in the exponent and also implies unconditional nω(k) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.
Originalspråk | engelska |
---|---|
Artikelnummer | 23 |
Sidor (från-till) | 1-26 |
Tidskrift | Journal of the ACM |
Volym | 68 |
Nummer | 4 |
DOI | |
Status | Published - 2021 aug. |
Ämnesklassifikation (UKÄ)
- Datavetenskap (datalogi)
- Diskret matematik