Projekt per år
Sammanfattning
The aim of this study is to compare knowledge-driven and data-driven methods for susceptibility mapping in spatial epidemiology. Our comparison focuses on one of the arguably most important requisites in such models, namely predictability. We compare one data-driven modelling method called Radial Basis Functional Link Net (RBFLN - a well-established Neural Network method) with two knowledge-driven modelling methods, Fuzzy AHP_OWA and Fuzzy GIS-based group decision making (multi criteria decision making methods). These methods are compared in the context of a concrete case study, namely the environmental modelling of Visceral Leishmaniasis (VL) for predictive mapping of risky areas. Our results show that, at least in this particular application, RBFLN model offers the best predictive accuracy
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Proceedings of the AGILE'2014 International Conference on Geographic Information Science, Castellón, June, 3-6 |
Förlag | Association of Geographic Information Laboratories for Europe |
Sidor | 1-5 |
Antal sidor | 5 |
Status | Published - 2014 |
Evenemang | 17th AGILE International Conference on Geographic Information Science, 2014 - Castellon, Spanien Varaktighet: 2014 juni 2 → 2014 juni 6 |
Konferens
Konferens | 17th AGILE International Conference on Geographic Information Science, 2014 |
---|---|
Land/Territorium | Spanien |
Ort | Castellon |
Period | 2014/06/02 → 2014/06/06 |
Ämnesklassifikation (UKÄ)
- Naturgeografi
Fingeravtryck
Utforska forskningsämnen för ”Comparing Knowledge-Driven and Data-Driven Modeling methods for susceptibility mapping in spatial epidemiology : a case study in Visceral Leishmaniasis”. Tillsammans bildar de ett unikt fingeravtryck.Projekt
- 1 Avslutade
-
Geospatial modeling and simulation techniques to study prevalence and spread of diseases
Mansourian, A., Pilesjö, P. & RAJABI GURANDANI, M.
2013/09/01 → 2017/09/30
Projekt: Avhandling