TY - JOUR
T1 - Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome.
AU - Ståhl, Anne-lie
AU - Sartz, Lisa
AU - Karpman, Diana
PY - 2011
Y1 - 2011
N2 - Hemolytic uremic syndrome (HUS) is commonly associated with Shiga toxin (Stx)-producing Escherichia coli O157:H7 infection. This study examined patient samples for complement activation on leukocyte-platelet complexes and microparticles as well as donor samples for Stx and lipopolysaccharide (O157LPS)-induced complement activation on platelet-leukocyte complexes and microparticles. Results, analyzed by flow cytometry, showed that whole blood from a child with HUS had surface-bound C3 on 30% of platelet-monocyte complexes compared to 14% after recovery and 12% in pediatric controls. Plasma samples from 12 HUS patients were analyzed for the presence of microparticles derived from platelets, monocytes and neutrophils. Acute phase samples exhibited high levels of platelet microparticles and, to a lesser extent, monocyte microparticles, both bearing C3 and C9. Levels decreased significantly at recovery. Stx or O157LPS incubated with donor whole blood increased the population of platelet-monocyte and platelet-neutrophil complexes with surface-bound C3 and C9, an effect enhanced by co-stimulation with Stx and O157LPS together. Both Stx and O157LPS induced the release of C3 and C9-bearing microparticles from platelets and monocytes. Released microparticles were phagocytosed by neutrophils. The presence of complement on platelet-leukocyte complexes, and microparticles derived from these cells, suggests a role in the inflammatory and thrombogenic events occurring during HUS.
AB - Hemolytic uremic syndrome (HUS) is commonly associated with Shiga toxin (Stx)-producing Escherichia coli O157:H7 infection. This study examined patient samples for complement activation on leukocyte-platelet complexes and microparticles as well as donor samples for Stx and lipopolysaccharide (O157LPS)-induced complement activation on platelet-leukocyte complexes and microparticles. Results, analyzed by flow cytometry, showed that whole blood from a child with HUS had surface-bound C3 on 30% of platelet-monocyte complexes compared to 14% after recovery and 12% in pediatric controls. Plasma samples from 12 HUS patients were analyzed for the presence of microparticles derived from platelets, monocytes and neutrophils. Acute phase samples exhibited high levels of platelet microparticles and, to a lesser extent, monocyte microparticles, both bearing C3 and C9. Levels decreased significantly at recovery. Stx or O157LPS incubated with donor whole blood increased the population of platelet-monocyte and platelet-neutrophil complexes with surface-bound C3 and C9, an effect enhanced by co-stimulation with Stx and O157LPS together. Both Stx and O157LPS induced the release of C3 and C9-bearing microparticles from platelets and monocytes. Released microparticles were phagocytosed by neutrophils. The presence of complement on platelet-leukocyte complexes, and microparticles derived from these cells, suggests a role in the inflammatory and thrombogenic events occurring during HUS.
U2 - 10.1182/blood-2010-09-309161
DO - 10.1182/blood-2010-09-309161
M3 - Article
C2 - 21447825
SN - 1528-0020
VL - 117
SP - 5503
EP - 5513
JO - Blood
JF - Blood
ER -