TY - JOUR
T1 - Complexes of Charged-Neutral Block Copolymers and Surfactants
T2 - Process-Dependent Features and Long-Term Stability of Their Aqueous Dispersions
AU - Ferreira, Guilherme A.
AU - Ram-On, Maor
AU - Talmon, Yeshayahu
AU - Schillén, Karin
AU - Piculell, Lennart
AU - Loh, Watson
PY - 2023
Y1 - 2023
N2 - Aqueous dispersions of charged-neutral block copolymers (poly(acrylamide)-b-poly(acrylate)) complexed with an oppositely charged surfactant (dodecyltrimethylammonium) have been prepared by different approaches: the simple mixing of two solutions (MS approach) containing the block copolymer and surfactant, with their respective simple counterions, and dispersion of a freeze-dried complex salt prepared in the absence of simple counterions (CS approach). The CS particles were investigated under different conditions: dispersion of a CS in salt-free water and dispersion of a CS in a dilute salt solution, the latter condition yielding dispersions with the same composition as the MS process. Additionally, aged dispersions (up to 6 months) and dispersed complexes of the polyacrylate homopolymer and dodecyltrimethylammonium surfactant were evaluated. By employing different characterization techniques, it was seen that dispersions prepared by the MS approach display nanometric spherical particles with disordered cores, and poor colloidal stability, partially caused by the absence of surface charge (ζ-potential close to zero). Oppositely, anisometric particles were formed in CS dispersions and were large enough to sustain micellar cubic cores. The CS particles presented long-time colloidal stability, partially due to a net negative surface charge, but the stability varied with the length of the neutral block composing the corona. Our results demonstrate that all dispersed particles are metastable structures, with physicochemical properties strongly dependent on the preparation procedure, thus making these particles suitable for fundamental studies and potential applications where accurate control of their properties, including size, shape, internal structure, and stability, is desired.
AB - Aqueous dispersions of charged-neutral block copolymers (poly(acrylamide)-b-poly(acrylate)) complexed with an oppositely charged surfactant (dodecyltrimethylammonium) have been prepared by different approaches: the simple mixing of two solutions (MS approach) containing the block copolymer and surfactant, with their respective simple counterions, and dispersion of a freeze-dried complex salt prepared in the absence of simple counterions (CS approach). The CS particles were investigated under different conditions: dispersion of a CS in salt-free water and dispersion of a CS in a dilute salt solution, the latter condition yielding dispersions with the same composition as the MS process. Additionally, aged dispersions (up to 6 months) and dispersed complexes of the polyacrylate homopolymer and dodecyltrimethylammonium surfactant were evaluated. By employing different characterization techniques, it was seen that dispersions prepared by the MS approach display nanometric spherical particles with disordered cores, and poor colloidal stability, partially caused by the absence of surface charge (ζ-potential close to zero). Oppositely, anisometric particles were formed in CS dispersions and were large enough to sustain micellar cubic cores. The CS particles presented long-time colloidal stability, partially due to a net negative surface charge, but the stability varied with the length of the neutral block composing the corona. Our results demonstrate that all dispersed particles are metastable structures, with physicochemical properties strongly dependent on the preparation procedure, thus making these particles suitable for fundamental studies and potential applications where accurate control of their properties, including size, shape, internal structure, and stability, is desired.
KW - Colloidal particles
KW - Colloids
KW - Copolymers
KW - Surfactants
KW - X-ray scattering
U2 - 10.1021/acs.langmuir.2c03500
DO - 10.1021/acs.langmuir.2c03500
M3 - Article
C2 - 36881854
SN - 0743-7463
VL - 39
SP - 4113
EP - 4124
JO - Langmuir : the ACS journal of surfaces and colloids
JF - Langmuir : the ACS journal of surfaces and colloids
IS - 11
ER -