Sammanfattning
We introduce a parameter space containing all algebraic integers β ∈ (1, 2] that are not Pisot or Salem numbers, and a sequence of increasing piecewise continuous function on this parameter space which gives a lower bound for the Garsia entropy of the Bernoulli convolution ν β . This allows us to show that dimH(ν β ) = 1 for all β with representations in certain open regions of the parameter space.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 4744-4763 |
Antal sidor | 20 |
Tidskrift | Nonlinearity |
Volym | 34 |
Utgåva | 7 |
DOI | |
Status | Published - 2021 |
Ämnesklassifikation (UKÄ)
- Matematik