Computing Nodal Deficiency with a Refined Dirichlet-to-Neumann Map

G. Berkolaiko, G. Cox, B. Helffer, M. P. Sundqvist

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Recent work of the authors and their collaborators has uncovered fundamental connections between the Dirichlet-to-Neumann map, the spectral flow of a certain family of self-adjoint operators, and the nodal deficiency of a Laplacian eigenfunction (or an analogous deficiency associated to a non-bipartite equipartition). Using a refined construction of the Dirichlet-to-Neumann map, we strengthen all of these results, in particular getting improved bounds on the nodal deficiency of degenerate eigenfunctions. Our framework is very general, allowing for non-bipartite partitions, non-simple eigenvalues, and non-smooth nodal sets. Consequently, the results can be used in the general study of spectral minimal partitions, not just nodal partitions of generic Laplacian eigenfunctions.

Originalspråkengelska
Artikelnummer246
TidskriftJournal of Geometric Analysis
Volym32
Nummer10
DOI
StatusPublished - 2022 okt.

Ämnesklassifikation (UKÄ)

  • Matematisk analys

Fingeravtryck

Utforska forskningsämnen för ”Computing Nodal Deficiency with a Refined Dirichlet-to-Neumann Map”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här