Conformal minimal foliations on semi-Riemannian Lie groups

Sigmundur Gudmundsson, Elsa Ghandour, Victor Ottosson

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We study left-invariant foliations F on semi-Riemannian Lie groups G generated by a subgroup K. We are interested in such foliations which are conformal and with minimal leaves of codimension two. We classify such foliations F when the subgroup K is one of the important groups SU(2), SL_2(R), SU(2)*SU(2), SU(2)*SL_2(R)$, SU(2)*SO(2), SL_2(R)*SO(2). This way we construct new multi-dimensional families of Lie groups G carrying such foliations in each case. These foliations F produce local complex-valued harmonic morphisms on the corresponding Lie group G.
Originalspråkengelska
Sidor (från-till)1-20
TidskriftJournal of Geometry and Symmetry in Physics
Volym63
DOI
StatusPublished - 2022

Ämnesklassifikation (UKÄ)

  • Naturvetenskap
  • Geometri

Fingeravtryck

Utforska forskningsämnen för ”Conformal minimal foliations on semi-Riemannian Lie groups”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här