Sammanfattning
The structural change of individual giant double-stranded T4 DNA (165.6 kilobase pairs) molecules as a function of salt concentration was investigated by single molecular observation with fluorescence microscopy in a wide range of concentration of NaCl, 1 x 10(-6)-3 M. The measured long-axis length was transformed into a persistence length and subjected to a power-law analysis, which showed that the electrostatic contribution to the persistence length is inversely proportional to the square root of the salt concentration; i.e., it has a linear dependence on the screening length. This is interpreted as the behavior of a flexible chain with electrostatic excluded-volume interactions. Although double-stranded DNA is locally stiff, it displays flexibility when the contour length is much longer than the persistence length, as is the case for T4 DNA.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 6200-6206 |
Tidskrift | Macromolecules |
Volym | 39 |
Nummer | 18 |
DOI | |
Status | Published - 2006 |
Bibliografisk information
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Theoretical Chemistry (S) (011001039)
Ämnesklassifikation (UKÄ)
- Teoretisk kemi