Conservative logarithmic reconstructions and finite volume methods

Robert Artebrant, Achim Schroll

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

A class of high-order reconstruction methods based on logarithmic functions is presented. Inspired by Marquina's hyperbolic method, we introduce a double logarithmic ansatz of fifth order of accuracy. Low variation is guaranteed by the ansatz and (slope-) limiting is avoided. The method can reconstruct smooth extrema without order reduction. Fifth order of convergence is verified in a numerical experiment governed by the nonlinear Euler system. Numerical experiments, including the Osher-Shu shock/acoustic interaction, are presented.
Originalspråkengelska
Sidor (från-till)294-314
TidskriftSIAM Journal on Scientific Computing
Volym27
Nummer1
DOI
StatusPublished - 2005

Bibliografisk information

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Numerical Analysis (011015004), Centre for Mathematical Sciences (011015000)

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Conservative logarithmic reconstructions and finite volume methods”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här