Continuous deformations of harmonic maps and their unitons

Alexandru Aleman, María J. Martín, Anna Maria Persson, Martin Svensson

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

It is known that any harmonic map of finite uniton number from a Riemann surface into U (n) can be deformed into a new harmonic map with an associated S1-invariant extended solution. We study this deformation in detail using operator-theoretic methods. In particular, we show that the corresponding unitons are real analytic functions of the deformation parameter, and that the deformation is closely related to the Bruhat decomposition of the corresponding extended solution.

Originalspråkengelska
TidskriftMonatshefte fur Mathematik
DOI
StatusPublished - 2019 jan 28

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Continuous deformations of harmonic maps and their unitons”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här