Counting perfect matchings as fast as Ryser

Andreas Björklund

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We show that there is a polynomial space algorithm that counts the number of perfect matchings in an n-vertex graph in O*(2n/2) ⊂ O(1.415n) time. (O*(f(n)) suppresses functions polylogarithmic in f(n)). The previously fastest algorithms for the problem was the exponential space O*(((1 + √5)/2)n) ⊂ O(1.619n) time algorithm by Koivisto, and for polynomial space, the O(1.942n) time algorithm by Nederlof. Our new algorithm's runtime matches up to polynomial factors that of Ryser's 1963 algorithm for bipartite graphs. We present our algorithm in the more general setting of computing the hafnian over an arbitrary ring, analogously to Ryser's algorithm for permanent computation.

We also give a simple argument why the general exact set cover counting problem over a slightly superpolynomial sized family of subsets of an n element ground set cannot be solved in O*(2(1−ε1)n) time for any ε1 > 0 unless there are O*(2(1−ε2)n) time algorithms for computing an n x n 0/1 matrix permanent, for some ε2 > 0 depending only on ε1.
Originalspråkengelska
Titel på värdpublikation[Host publication title missing]
FörlagSociety for Industrial and Applied Mathematics
Sidor914-921
StatusPublished - 2012
EvenemangACM-SIAM Symposium on Discrete Algorithms - Kyoto, Japan
Varaktighet: 2012 jan. 172012 jan. 19

Konferens

KonferensACM-SIAM Symposium on Discrete Algorithms
Land/TerritoriumJapan
OrtKyoto
Period2012/01/172012/01/19

Ämnesklassifikation (UKÄ)

  • Datavetenskap (Datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Counting perfect matchings as fast as Ryser”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här