Coupling elements for substructure modelling of lightweight multi-storey buildings

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Abstract in Undetermined
Accurately modelling the dynamic behaviour of multi-storey buildings in wood requires the geometry involved to be represented in great detail, resulting in systems having many millions of degrees of freedom. Consequently, there is a need for model order reduction and the methodology of substructure modelling is employed here to create reduced models for analysis of low-frequency vibrations. The full finite element model of a building is divided into substructures
which are reduced in size before being assembled to form the global model. The efficiency of the reduced models is strongly dependent on the number of degrees of freedom at the interface surfaces of the substructures, why it may be necessary to perform interface reduction of some sort. Multi-storey buildings in wood are often constructed with
elastomer layers separating the structural components, these offering a natural choice of dividing the buildings into substructures. In this paper, the methodology of introducing a condensation node is adopted for employing interface reduction at the interfaces between the elastomer layers and the structural components in wood. Different methods of coupling the condensation node to the interface surfaces were compared in a test model consisting of a floor-ceiling structure in wood, where the floor and the ceiling are separated by elastomer blocks. It was concluded that a rigid coupling is the most appropriate choice for the interface surfaces of the elastomer blocks, while a distributed coupling provides the most accurate results for the interface surfaces of the floor and the ceiling.
Originalspråkengelska
Titel på värdpublikationDynamics of Coupled Structures
RedaktörerMatt Allen, Randy Mayes, Daniel Rixen
FörlagSpringer
Sidor113-124
VolymVolume 1
ISBN (tryckt)978-3-319-04500-9
StatusPublished - 2014
EvenemangInternational Modal Analysis Conference (IMAC) XXXII - Orlando, Florida
Varaktighet: 2014 feb. 32014 feb. 6

Publikationsserier

Namn
VolymVolume 1

Konferens

KonferensInternational Modal Analysis Conference (IMAC) XXXII
Period2014/02/032014/02/06

Ämnesklassifikation (UKÄ)

  • Maskinteknik

Fingeravtryck

Utforska forskningsämnen för ”Coupling elements for substructure modelling of lightweight multi-storey buildings”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här