TY - JOUR
T1 - Crystallization and X-ray diffraction analysis of a novel surface-adhesin protein: protein E from Haemophilus influenzae.
AU - Singh, Birendra
AU - Tamim, Al-Jubair
AU - Förnvik, Karolina
AU - Thunnissen, Marjolein
AU - Riesbeck, Kristian
PY - 2012
Y1 - 2012
N2 - Protein E (PE) is a ubiquitous multifunctional surface protein of Haemophilus spp. and other bacterial pathogens of the Pasteurellaceae family. H. influenzae utilizes PE for attachment to respiratory epithelial cells. In addition, PE interacts directly with plasminogen and the extracellular matrix (ECM) components vitronectin and laminin. Vitronectin is a complement regulator that inhibits the formation of the membrane-attack complex (MAC). PE-mediated vitronectin recruitment at the H. influenzae surface thus inhibits MAC and protects against serum bactericidal activity. Laminin is an abundant ECM protein and is present in the basement membrane that helps in adherence of H. influenzae during colonization. Here, the expression, purification and crystallization of and the collection of high-resolution data for this important H. influenzae adhesin are reported. To solve the phase problem for PE, Met residues were introduced and an SeMet variant was expressed and crystallized. Both native and SeMet-containing PE gave plate-like crystals in space group P2(1), with unit-cell parameters a = 44, b = 57, c = 61 Å, β = 96°. Diffraction data collected from native and SeMet-derivative crystals extended to resolutions of 1.8 and 2.6 Å, respectively.
AB - Protein E (PE) is a ubiquitous multifunctional surface protein of Haemophilus spp. and other bacterial pathogens of the Pasteurellaceae family. H. influenzae utilizes PE for attachment to respiratory epithelial cells. In addition, PE interacts directly with plasminogen and the extracellular matrix (ECM) components vitronectin and laminin. Vitronectin is a complement regulator that inhibits the formation of the membrane-attack complex (MAC). PE-mediated vitronectin recruitment at the H. influenzae surface thus inhibits MAC and protects against serum bactericidal activity. Laminin is an abundant ECM protein and is present in the basement membrane that helps in adherence of H. influenzae during colonization. Here, the expression, purification and crystallization of and the collection of high-resolution data for this important H. influenzae adhesin are reported. To solve the phase problem for PE, Met residues were introduced and an SeMet variant was expressed and crystallized. Both native and SeMet-containing PE gave plate-like crystals in space group P2(1), with unit-cell parameters a = 44, b = 57, c = 61 Å, β = 96°. Diffraction data collected from native and SeMet-derivative crystals extended to resolutions of 1.8 and 2.6 Å, respectively.
U2 - 10.1107/S1744309111055503
DO - 10.1107/S1744309111055503
M3 - Article
C2 - 22298005
SN - 2053-230X
VL - 68
SP - 222
EP - 226
JO - Acta Crystallographica. Section F: Structural Biology and Crystallization Communications
JF - Acta Crystallographica. Section F: Structural Biology and Crystallization Communications
IS - Pt 2
ER -