Projekt per år
Sammanfattning
We show how a multi-resolution network can model the development of acuity and coarse-to-fine processing in the mammalian visual cortex. The network adapts to input statistics in an unsupervised manner, and learns a coarse-to-fine representation by using cumulative inhibition of nodes within a network layer. We show that a system of such layers can represent input by hierarchically composing larger parts from smaller components. It can also model aspects of top-down processes, such as image regeneration.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 87-102 |
Tidskrift | Cognitive Processing |
Volym | 20 |
Utgåva | 1 |
Tidigt onlinedatum | 2018 nov. 3 |
DOI | |
Status | Published - 2019 |
Ämnesklassifikation (UKÄ)
- Jämförande språkvetenskap och lingvistik
Fingeravtryck
Utforska forskningsämnen för ”Cumulative inhibition in neural networks”. Tillsammans bildar de ett unikt fingeravtryck.-
CogPhi: Cognitive Philosophy Research Group (CogPhi)
Stephens, A., Tjöstheim, T. A., Roszko, M., Olsson, E. J., Anikin, A. & Arthur Schwaninger, T. P. U. O. Z.
2018/11/01 → …
Projekt: Nätverk
-
eSSENCE@LU 4:1 - Method development for analysis and modelling of large scale electrophysiological recordings using deep artificial neural networks
Balkenius, C., Petersson, P., Åström, K., Tjöstheim, T. A., Johansson, B. & Sjöbom, J.
2017/07/01 → 2020/06/30
Projekt: Forskning
Utrustning
-
Lund University Cognitive Robotics Lab
Birger Johansson (Manager) & Christian Balkenius (Manager)
KognitionsvetenskapInfrastruktur