Deep Learning for Modelling of Urban Drainage Networks: A Physics-informed Surrogate Model Using Measured and Simulated Data

Salar Haghighatafshar, Alexander Bergman, Mikael Yamanee-Nolin

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

City-wide climate adaptation for pluvial flood mitigation requires fast and reliable simulation tools. Considering the limitations of hydrodynamic models at city-scale simulations, data driven models have high potential in the development of surrogate tools. This study explores the Google DeepMind WaveNet™ model architecture to map hydrological response of catchments onto hydraulic parameters of the pipe network in a physically informed approach to deep learning. The WaveNet-based surrogate model successfully predicted hydraulic head and pipe flow in the network at average Normalized Nash-Sutcliffe Model Efficiency Indices of above 0.8, while boosting simulation speed by a factor of 1000. The developed AI model can be used for different assessment and optimization studies on the drainage network, thanks to its physics-informed structure.
Originalspråkengelska
Titel på värdpublikationProceedings of IWA World Water Congress & Exhibition, Copenhagen 2022
FörlagIWA Publishing
StatusPublished - 2022
EvenemangIWA World Water Congress and Exhibition, 2022: Water for smart liveable cities - Bella Center, Copenhagen, Danmark
Varaktighet: 2022 sep. 112022 sep. 15
https://worldwatercongress.org/

Konferens

KonferensIWA World Water Congress and Exhibition, 2022
Förkortad titelIWA WWCE
Land/TerritoriumDanmark
OrtCopenhagen
Period2022/09/112022/09/15
Internetadress

Ämnesklassifikation (UKÄ)

  • Infrastrukturteknik
  • Vattenteknik

Fingeravtryck

Utforska forskningsämnen för ”Deep Learning for Modelling of Urban Drainage Networks: A Physics-informed Surrogate Model Using Measured and Simulated Data”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här