Defining Graph Signal Distances Using an Optimal Mass Transport Framework

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

In this work, we propose a novel measure of distance for quantifying dissimilarities between signals observed on a graph. Building on a recently introduced optimal mass transport framework, the distance measure is formed using the second-order statistics of the graph signals, allowing for comparison of graph processes without direct access to the signals themselves, while explicitly taking the dynamics of the underlying graph into account. The behavior of the proposed distance notion is illustrated in a graph signal classification scenario, indicating attractive modeling properties as compared to the standard Euclidean metric.
Originalspråkengelska
Titel på värdpublikation2019 27th European Signal Processing Conference, EUSIPCO 2019
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Antal sidor5
Volym2019
ISBN (elektroniskt)978-9-0827-9703-9
ISBN (tryckt)978-1-5386-7300-3
DOI
StatusPublished - 2019
Evenemang27th European Signal Processing Conference (EUSIPCO) - A Coruna, Spanien
Varaktighet: 2019 sep. 22019 sep. 6

Konferens

Konferens27th European Signal Processing Conference (EUSIPCO)
Land/TerritoriumSpanien
OrtA Coruna
Period2019/09/022019/09/06

Ämnesklassifikation (UKÄ)

  • Signalbehandling
  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Defining Graph Signal Distances Using an Optimal Mass Transport Framework”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här