Democratic Tone Mapping Using Optimal K-means Clustering

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

The field of high dynamic range imaging addresses the problem of capturing and displaying the large range of luminance levels found in the world, using devices with limited dynamic range. In this paper we present a novel tone mapping algorithm that is based on $K$-means clustering. Using dynamic programming we are able to, not only solve the clustering problem efficiently, but also find the global optimum. Our algorithm runs in O(N^2K) for an image with N luminance levels and K output levels. We show that our algorithm gives comparable result to state-of-the-art tone mapping algorithms, but with the additional large benefit of a total lack of parameters. We test our algorithm on a number of standard high dynamic range images, and give qualitative comparisons to a number of state-of-the-art tone mapping algorithms.
Originalspråkengelska
Titel på värdpublikationLecture Notes in Computer Science (Image Analysis, 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015. Proceedings))
RedaktörerRasmus Paulsen, Kim Pedersen
FörlagSpringer
Sidor354-365
Antal sidor12
Volym9127
ISBN (tryckt)978-3-319-19665-7, 978-3-319-19664-0
DOI
StatusPublished - 2015
Evenemang19th Scandinavian Conference on Image Analysis (SCIA 2015) - Copenhagen, Danmark
Varaktighet: 2015 juni 152015 juni 17

Publikationsserier

Namn
Volym9127
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Konferens

Konferens19th Scandinavian Conference on Image Analysis (SCIA 2015)
Land/TerritoriumDanmark
OrtCopenhagen
Period2015/06/152015/06/17

Ämnesklassifikation (UKÄ)

  • Diskret matematik
  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Democratic Tone Mapping Using Optimal K-means Clustering”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här