Designing proteins to crystallize through beta-strand pairing

Christer Wingren, AB Edmundson, Carl Borrebaeck

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Inherent difficulties in growing protein crystals are major concerns within structural biology and particularly in structural proteomics. Here, we describe a novel approach of engineering target proteins by surface mutagenesis to increase the odds of crystallizing the molecules. To this end, we have exploited our recent triad-hypothesis using proteins with crystallographically defined beta-structures as the principal models. Crystal packing analyses of 182 protein structures belonging to 21 different superfamilies implied that the propensities to crystallize could be engineered into target proteins by replacing short segments, 5-6 residues, of their beta-strands with 'cassettes' of suitable packing motifs. These packing motifs will generate specific crystal packing interactions that promote crystallization. Key features of the primary and tertiary structures of such packing motifs have been identified for immunoglobulins. Further, packing motifs have been engineered successfully into six model antibodies without disturbing their capabilities to be produced, their immunoreactivity and their overall structure. Preliminary crystallization analyses have also been performed. Taken together, the procedures outline a rational protocol for crystallizing proteins by surface mutagenesis. The importance of these findings is discussed in relation to the crystallization of proteins in general.
Originalspråkengelska
Sidor (från-till)255-264
TidskriftProtein Engineering
Volym16
Utgåva4
DOI
StatusPublished - 2003

Ämnesklassifikation (UKÄ)

  • Immunologi inom det medicinska området

Fingeravtryck

Utforska forskningsämnen för ”Designing proteins to crystallize through beta-strand pairing”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här