Designing sampling schemes for multi-dimensional data

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning


In this work, we propose a method for determining a non-uniform sampling scheme for multi-dimensional signals by solving a convex optimization problem reminiscent of the sensor selection problem. The resulting sampling scheme minimizes the sum of the Cramér–Rao lower bounds for the parameters of interest, given a desired number of sampling points. The proposed framework allows for selecting an arbitrary subset of the parameters detailing the model, as well as weighing the importance of the different parameters. Also presented is a scheme for incorporating any imprecise a priori knowledge of the locations of the parameters, as well as defining estimation performance bounds for the parameters of interest. Numerical examples illustrate the efficiency of the proposed scheme.
Originalspråkengelska
Sidor (från-till)1-10
Antal sidor10
TidskriftSignal Processing
Volym150
DOI
StatusPublished - 2018

Ämnesklassifikation (UKÄ)

  • Signalbehandling

Fingeravtryck

Utforska forskningsämnen för ”Designing sampling schemes for multi-dimensional data”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här