Dimension splitting for quasilinear parabolic equations

Eskil Hansen, Alexander Ostermann

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

In the current paper, we derive a rigorous convergence analysis for
a broad range of splitting schemes applied to abstract nonlinear
evolution equations, including the Lie and Peaceman-Rachford
splittings. The analysis is in particular applicable to (possibly
degenerate) quasilinear parabolic problems and their dimension
splittings. The abstract framework is based on the theory of maximal
dissipative operators, and we both give a summary of the used theory
and some extensions of the classical results. The derived
convergence results are illustrated by numerical experiments.
Originalspråkengelska
Sidor (från-till)857-869
TidskriftIMA Journal of Numerical Analysis
Volym30
Nummer3
DOI
StatusPublished - 2010
Externt publiceradJa

Ämnesklassifikation (UKÄ)

  • Elektroteknik och elektronik

Fingeravtryck

Utforska forskningsämnen för ”Dimension splitting for quasilinear parabolic equations”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här