TY - JOUR
T1 - Direct numerical simulation of lean premixed CH4/air and H-2/air flames at high Karlovitz numbers
AU - Carlsson, Henning
AU - Yu, Rixin
AU - Bai, Xue-Song
PY - 2014
Y1 - 2014
N2 - Three-dimensional direct numerical simulation with detailed chemical kinetics of lean premixed CH4/air and H-2/air flames at high Karlovitz numbers (Ka similar to 1800) is carried out. It is found that the high intensity turbulence along with differential diffusion result in a much more rapid transport of H radicals from the reaction zone to the low temperature unburned mixtures (similar to 500 K) than that in laminar flamelets. The enhanced concentration of H radicals in the low temperature zone drastically increases the reaction rates of exothermic chain terminating reactions (e.g., H + O-2+M = HO2 + M in lean H-2/air flames), which results in a significantly enhanced heat release rate at low temperatures. This effect is observed in both CH4/air and H-2/air flames and locally, the heat release rate in the low temperature zone can exceed the peak heat release rate of a laminar flamelet. The effects of chemical kinetics and transport properties on the H-2/air flame are investigated, from which it is concluded that the enhanced heat release rate in the low temperature zone is a convection-diffusion-reaction phenomenon, and to obtain it, detailed chemistry is essential and detailed transport is important. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
AB - Three-dimensional direct numerical simulation with detailed chemical kinetics of lean premixed CH4/air and H-2/air flames at high Karlovitz numbers (Ka similar to 1800) is carried out. It is found that the high intensity turbulence along with differential diffusion result in a much more rapid transport of H radicals from the reaction zone to the low temperature unburned mixtures (similar to 500 K) than that in laminar flamelets. The enhanced concentration of H radicals in the low temperature zone drastically increases the reaction rates of exothermic chain terminating reactions (e.g., H + O-2+M = HO2 + M in lean H-2/air flames), which results in a significantly enhanced heat release rate at low temperatures. This effect is observed in both CH4/air and H-2/air flames and locally, the heat release rate in the low temperature zone can exceed the peak heat release rate of a laminar flamelet. The effects of chemical kinetics and transport properties on the H-2/air flame are investigated, from which it is concluded that the enhanced heat release rate in the low temperature zone is a convection-diffusion-reaction phenomenon, and to obtain it, detailed chemistry is essential and detailed transport is important. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
KW - Turbulent premixed combustion
KW - Direct numerical simulation
KW - High
KW - Karlovitz number
KW - Detailed chemistry
KW - Differential diffusion
U2 - 10.1016/j.ijhydene.2014.09.173
DO - 10.1016/j.ijhydene.2014.09.173
M3 - Article
SN - 1879-3487
VL - 39
SP - 20216
EP - 20232
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
IS - 35
ER -