Dopamine Cell Therapy: From Cell Replacement to Circuitry Repair

Forskningsoutput: TidskriftsbidragÖversiktsartikelPeer review

Sammanfattning

Cell therapy for Parkinson's disease (PD) is aimed to replace the degenerated midbrain dopamine (mDA) neurons and restore DA neurotransmission in the denervated forebrain targets. A limitation of the intrastriatal grafting approach, which is currently used in clinical trials, is that the mDA neurons are implanted into the target area, in most cases the putamen, and not in the ventral midbrain where they normally reside. This ectopic location of the cells may limit their functionality due to the lack of appropriate afferent regulation from the host. Homotopic transplantation, into the substantia nigra, is now being pursued in rodent PD models as a way to achieve more complete circuitry repair. Intranigral grafts of mDA neurons, derived from human embryonic stem cells, have the capacity to re-establish the nigrostriatal and mesolimbic pathways in their entirety and restore dense functional innervations in striatal, limbic and cortical areas. Tracing of host afferent inputs using the rabies tracing technique shows that the afferent connectivity of grafts implanted in the nigra matches closely that of the intrinsic mDA system, suggesting a degree of circuitry reconstruction that exceeds what has been achieved before. This approach holds great promise, but to match the larger size of the human brain, and the 10 times greater distance between substantia nigra and its forebrain targets, it may be necessary to find ways to improve the growth capacity of the grafted mDA neurons, pointing to a combined approach where growth promoting factors are used to enhance the performance of mDA neuron grafts.

Originalspråkengelska
Sidor (från-till)S159-S165
TidskriftJournal of Parkinson's Disease
Volym11
Nummers2
Tidigt onlinedatum2021 mars 29
DOI
StatusPublished - 2021

Ämnesklassifikation (UKÄ)

  • Neurovetenskaper
  • Neurologi

Fingeravtryck

Utforska forskningsämnen för ”Dopamine Cell Therapy: From Cell Replacement to Circuitry Repair”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här