Dynamically evolving Gaussian spatial fields

Anastassia Baxevani, Krzysztof Podgorski, Igor Rychlik

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

10 Citeringar (SciVal)


We discuss general non-stationary spatio-temporal surfaces that involve dynamics governed by velocity fields. The approach formalizes and expands previously used models in analysis of satellite data of significant wave heights. We start with homogeneous spatial fields. By applying an extension of the standard moving average construction we obtain models which are stationary in time. The resulting surface changes with time but is dynamically inactive since its velocities, when sampled across the field, have distributions centered at zero. We introduce a dynamical evolution to such a field by composing it with a dynamical flow governed by a given velocity field. This leads to non-stationary models. The models are extensions of the earlier discretized autoregressive models which account for a local velocity of traveling surface. We demonstrate that for such a surface its dynamics is a combination of dynamics introduced by the flow and the dynamics resulting from the covariance structure of the underlying stochastic field. We extend this approach to fields that are only locally stationary and have their parameters varying over a larger spatio-temporal horizon.
Sidor (från-till)223-251
StatusPublished - 2011

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik


Utforska forskningsämnen för ”Dynamically evolving Gaussian spatial fields”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här