Dynamics in the Szegő class and polynomial asymptotics

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

1 Citering (SciVal)

Sammanfattning

We introduce the Szegő class, Sz(E), for an arbitrary Parreau–Widom set E ⊂ ℝ and study the dynamics of its elements under the left shift. When the direct Cauchy theorem holds on ℂ\E, we show that to each J ∈ Sz(E) there is a unique element J′ in the isospectral torus, T E , so that the left-shifts of J are asymptotic to the orbit {J′ m } on T E . Moreover, we show that the ratio of the associated orthogonal polynomials has a limit, expressible in terms of Jost functions, as the degree n tends to ∞. This enables us to describe the large n behaviour of the orthogonal polynomials for every J in the Szegő class.

Originalspråkengelska
Sidor (från-till)723-749
TidskriftJournal d'Analyse Mathematique
Volym137
Utgåva2
Tidigt onlinedatum2019 mars 19
DOI
StatusPublished - 2019

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Dynamics in the Szegő class and polynomial asymptotics”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här