Sammanfattning
Purpose
To present baseline characteristics and to present the perioperative corneal thickness during corneal crosslinking (CXL) treatment for progressive keratoconus and to describe how the addition of sterile water (SW) efficaciously can maintain the corneal thickness. The treatment efficacy will be evaluated when the 1-year follow-up is complete.
Methods
A randomised clinical study using epithelium-off CXL with continuous UVA irradiation (9 mW/cm2) and two kinds of riboflavin solutions: (i) isoosmolar dextran-based riboflavin (n = 27) and (ii) hypoosmolar dextran-free riboflavin (n = 27). Inclusion criteria: progressive keratoconus with an increase in maximum keratometry value (Kmax) of 1.0 dioptre (12 months) or 0.5 dioptres (6 months). Corneae thinner than 400 μm were also included. Outcome parameters: Perioperative corneal thickness and the effect of adding SW.
Results
Seventy-four per cent of the patients in the isoosmolar group and 15% in the hypoosmolar group required the addition of SW, which effectively maintained a corneal thickness of 400 μm in all cases during CXL. The addition of SW was primarily needed during the irradiation procedure and not the preoperative soaking period.
Conclusions
Especially during the CXL irradiation phase, isoosmolar riboflavin causes a significant dehydrating effect leading to corneal thinning during CXL. The customised addition of SW is efficacious in maintaining the corneal thickness during CXL and could increase the safety of the procedure.
To present baseline characteristics and to present the perioperative corneal thickness during corneal crosslinking (CXL) treatment for progressive keratoconus and to describe how the addition of sterile water (SW) efficaciously can maintain the corneal thickness. The treatment efficacy will be evaluated when the 1-year follow-up is complete.
Methods
A randomised clinical study using epithelium-off CXL with continuous UVA irradiation (9 mW/cm2) and two kinds of riboflavin solutions: (i) isoosmolar dextran-based riboflavin (n = 27) and (ii) hypoosmolar dextran-free riboflavin (n = 27). Inclusion criteria: progressive keratoconus with an increase in maximum keratometry value (Kmax) of 1.0 dioptre (12 months) or 0.5 dioptres (6 months). Corneae thinner than 400 μm were also included. Outcome parameters: Perioperative corneal thickness and the effect of adding SW.
Results
Seventy-four per cent of the patients in the isoosmolar group and 15% in the hypoosmolar group required the addition of SW, which effectively maintained a corneal thickness of 400 μm in all cases during CXL. The addition of SW was primarily needed during the irradiation procedure and not the preoperative soaking period.
Conclusions
Especially during the CXL irradiation phase, isoosmolar riboflavin causes a significant dehydrating effect leading to corneal thinning during CXL. The customised addition of SW is efficacious in maintaining the corneal thickness during CXL and could increase the safety of the procedure.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 1-10 |
Tidskrift | Acta Ophthalmologica |
DOI | |
Status | E-pub ahead of print - 2024 juli 5 |
Ämnesklassifikation (UKÄ)
- Oftalmologi