Sammanfattning
Strategies employing different techniques to inhibit or stimulate neurogenesis have implicated a role for adult-born neurons in the therapeutic effect of antidepressant drugs, as well as a role in memory formation.
Electroconvulsive seizures, an animal model of electroconvulsive therapy, robustly stimulate hippocampal neurogenesis but it is not known how this relates to either therapeutic efficacy or unwanted cognitive side effects. We hypothesized that the ECS-derived increase in adult-born neurons would manifest in improved pattern separation ability, a memory function that is believed to be both hippocampus-dependent and coupled to neurogenesis. To test this hypothesis, we stimulated neurogenesis in adult rats by treating them with a series of ECS and compared their performances in a trial-unique delayed nonmatching-to-location task (TUNL) to a control group. TUNL performance was analyzed over a 12-week period, during which newly formed neurons differentiate and become functionally integrated in the hippocampal neurocircuitry. Task difficulty was manipulated by modifying the delay between sample and choice, and by varying the spatial similarity between target and distracter location. Although animals learned the task and improved the number of correct responses over time, ECS did not influence spatial pattern separation ability.
Electroconvulsive seizures, an animal model of electroconvulsive therapy, robustly stimulate hippocampal neurogenesis but it is not known how this relates to either therapeutic efficacy or unwanted cognitive side effects. We hypothesized that the ECS-derived increase in adult-born neurons would manifest in improved pattern separation ability, a memory function that is believed to be both hippocampus-dependent and coupled to neurogenesis. To test this hypothesis, we stimulated neurogenesis in adult rats by treating them with a series of ECS and compared their performances in a trial-unique delayed nonmatching-to-location task (TUNL) to a control group. TUNL performance was analyzed over a 12-week period, during which newly formed neurons differentiate and become functionally integrated in the hippocampal neurocircuitry. Task difficulty was manipulated by modifying the delay between sample and choice, and by varying the spatial similarity between target and distracter location. Although animals learned the task and improved the number of correct responses over time, ECS did not influence spatial pattern separation ability.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 1351-1360 |
Tidskrift | Hippocampus |
Volym | 25 |
Nummer | 11 |
DOI | |
Status | Published - 2015 |
Ämnesklassifikation (UKÄ)
- Psykiatri