Effect of solute hydrophobicity on phase behaviour in solutions of thermoseparating polymers

Hans-Olof Johansson, Gunnar Karlström, Folke Tjerneld

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review


Abstract (1/2-em) Two-phase systems consisting of a polymer rich phase and polymer depleted phase, where the polymer is either ethyl(hydroxy ethyl)cellulose (EHEC) or Ucon (a random copolymer of ethylene oxide and propylene oxide), have been studied. Both of these polymers can be separated from an aqueous solution by either temperature increase or addition of cosolutes. The polymers are thermoseparating and phase separate in water solutions at the cloud point temperature. Two types of EHEC have been studied: one with a cloud point at 60 degreesC and the other at 37 degreesC. The Ucon polymer used in this study has a cloud point at 50 degreesC. Ternary phase diagrams of polymer/water/cosolute systems have been investigated. When a strongly hydrophilic or hydrophobic cosolute is added to an EHEC- or Ucon-water solution, a phase separation occurs already at, or below, room temperature. As cosolutes, hydrophobic molecules like phenol, butyric and propionic acid, and hydrophilic molecules like glycine, ammonium acetate, sodium carboxylates (acetate to valerate), were studied. The polymer rich phase formed when mixing polymer, water and cosolute was strongly enriched or depleted with hydrophobic or hydrophilic cosolutes, respectively. The two phase region increased for propionic acid, butyric acid and phenol as a result of increased cosolute hydrophobicity. The opposite occurred in the series sodium acetate, sodium butyrate and sodium valerate. The effect of temperature on the phase behaviour has also been investigated. Model calculations based on Flory-Huggins theory of polymer solutions are presented, in form of a phase diagram, which semiquantitatively reproduce some experimental results.
Sidor (från-till)458-466
TidskriftColloid and Polymer Science
StatusPublished - 1997

Bibliografisk information

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Theoretical Chemistry (S) (011001039), Biochemistry and Structural Biology (S) (000006142)

Ämnesklassifikation (UKÄ)

  • Biologiska vetenskaper
  • Teoretisk kemi


Utforska forskningsämnen för ”Effect of solute hydrophobicity on phase behaviour in solutions of thermoseparating polymers”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här