Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene

Matthew J. Webb, Craig Polley, Kai Dirscherl, Gregory Burwell, Pal Palmgren, Yuran Niu, Anna Lundstedt, Alexei Zakharov, Owen J. Guy, Balasubramanian Thiagarajan, Rositsa Yakimova, Helena Grennberg

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

By combining ozone and water, the effect of exposing epitaxial graphene on silicon carbide to an aggressive wet-chemical process has been evaluated after high temperature annealing in ultra high vacuum. The decomposition of ozone in water produces a number of oxidizing species, however, despite long exposure times to the aqueous-ozone environment, no graphene oxide was observed after the two-step process. The systems were comprehensively characterized before and after processing using Raman spectroscopy, core level photoemission spectroscopy, and angle resolved photoemission spectroscopy together with low energy electron diffraction, low energy electron microscopy, and atomic force microscopy. In spite of the chemical potential of the aqueous-ozone reaction environment, the graphene domains were largely unaffected raising the prospect of employing such simple chemical and annealing protocols to clean or prepare epitaxial graphene surfaces. (C) 2014 AIP Publishing LLC.
Originalspråkengelska
Artikelnummer081602
TidskriftApplied Physics Letters
Volym105
Nummer8
DOI
StatusPublished - 2014

Ämnesklassifikation (UKÄ)

  • Naturvetenskap
  • Fysik

Fingeravtryck

Utforska forskningsämnen för ”Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här