Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats

Elisabet Agardh, B Hultberg, Carl-David Agardh

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

PURPOSE: To study effects of inhibition of glycation, and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats. METHODS: Diabetes was induced in male Wistar rats with streptozocin (STZ; 60 mg/kg BW, i.p.). Diabetic as well as strain matched control rats were fed 1) a normal diet, 2) addition of aminoguanidine in the drinking water (0.5 g/l for diabetic rats and 1.0 g/l for control rats) or 3) probucol in the pellets (1% w/w). After 6 months, the number of acellular vessels, endothelial cells and pericytes were counted in trypsin digested retinal vessel preparations, and the total retinal tissue amount of glutathione (GSH) and cysteine was measured with HPLC. RESULTS: Cataract formation occurred after 13 weeks in diabetic animals compared with 17 weeks for those treated with aminoguanidine, and 16 weeks for those treated with probucol (p < 0.001 in both cases). Aminoguanidine inhibited the formation of acellular collapsed capillary strands, 9 (3-14) vs. 18 (12-262) (median, range) per quadrant in untreated diabetic rats (p = 0.004), while probucol did not have any effect. Neither aminoguanidine, nor probucol influenced the endothelial/pericyte ratio. Diabetes caused a reduction in the GSH/cysteine ratio (10.7 +/- 0.6 vs. 15.3 +/- 1. 5) (mean +/- SD; p < 0.001). Probucol partly restored this imbalance (p < 0.05) whereas aminoguanidine did not. CONCLUSIONS: The results indicate that cataract formation in diabetes involves both glycation and oxidative stress processes. The reduced formation of acellular collapsed capillary strands by aminoguanidine suggests a potential role for glycation in vascular damage. The positive effect of probucol on cysteine/GSH metabolism imbalance indicates that derangements of one of the retinal defense systems against oxidative stress can be normalized by antioxidants.
Originalspråkengelska
Sidor (från-till)543-549
TidskriftCurrent Eye Research
Volym21
Nummer1
DOI
StatusPublished - 2000

Bibliografisk information

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Unit on Vascular Diabetic Complications (013241510)

Ämnesklassifikation (UKÄ)

  • Oftalmologi

Fingeravtryck

Utforska forskningsämnen för ”Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här