Effects of Regioselectivity and Lipid Class Specificity of Lipases on Transesterification, Exemplified by Biodiesel Production

Dovile Sinkuniene, Patrick Adlercreutz

Forskningsoutput: TidskriftsbidragLetter

Sammanfattning

Lipase-catalyzed ethanolysis of triolein was studied as a model for biodiesel production. Four lipases were immobilized on porous polypropylene, and ethanolysis reactions were carried out in methyl t-butyl ether. The reaction products were analyzed using gas chromatography. Three of the four lipases studied were efficient in the conversion of triolein to 2-monoolein, but slow in the final step of producing glycerol. However, Candida antarctica lipase B was slow in the conversion of triolein, but more efficient in the subsequent two steps than the other lipases. The 1,3-selectivity of the lipases was less pronounced for the monooleins than for triolein. Silica gel was investigated as a catalyst for acyl migration, showing an increase in biodiesel yield with three of the lipases, but a reduction in yield when C. antarctica lipase B was used. The highest biodiesel yield (96 %) was obtained with a combination of Rhizopus arrhizus lipase and C. antarctica lipase B.
Originalspråkengelska
Sidor (från-till)1283-1290
TidskriftJournal of the American Oil Chemists Society
Volym91
Nummer7
DOI
StatusPublished - 2014

Ämnesklassifikation (UKÄ)

  • Industriell bioteknik

Fingeravtryck

Utforska forskningsämnen för ”Effects of Regioselectivity and Lipid Class Specificity of Lipases on Transesterification, Exemplified by Biodiesel Production”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här