Efficient Merging of Maps and Detection of Changes

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review


With the advent of cheap sensors and computing capabilities as well as better algorithms it is now possible to do structure from motion using crowd sourced data. Individual estimates of a map can be obtained using structure from motion (SfM) or simultaneous localization and mapping (SLAM) using e.g. images, sound or radio. However the problem of map merging as used for collaborative SLAM needs further attention. In this paper we study the basic principles behind map merging and collaborative SLAM. We develop a method for merging maps – based on a small memory footprint representation of individual maps – in a way that is computationally efficient. We also demonstrate how the same framework can be used to detect changes in the map. This makes it possible to remove inconsistent parts before merging the maps. The methods are tested on both simulated and real data, using both sensor data from radio sensors and from cameras.

Titel på värdpublikationImage Analysis - 21st Scandinavian Conference, SCIA 2019, Proceedings
RedaktörerMichael Felsberg, Per-Erik Forssén, Jonas Unger, Ida-Maria Sintorn
Antal sidor13
ISBN (tryckt)9783030202040
StatusPublished - 2019
Evenemang21st Scandinavian Conference on Image Analysis, SCIA 2019 - Norrköping, Sverige
Varaktighet: 2019 juni 112019 juni 13


NamnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volym11482 LNCS
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349


Konferens21st Scandinavian Conference on Image Analysis, SCIA 2019

Ämnesklassifikation (UKÄ)

  • Datorseende och robotik (autonoma system)


Utforska forskningsämnen för ”Efficient Merging of Maps and Detection of Changes”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här