Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode

Yihang Li, Manish Singh, Zechao Zhuang, Yifu Jing, Fengjiao Li, Kristina Maliutina, Chuanxin He, Liangdong Fan

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The reversible solid oxide cell (RSOC) is an attractive technology to mutually convert power and chemicals at elevated temperatures. However, its development has been hindered mainly due to the absence of a highly active and durable fuel electrode. Here, we report a phase-transformed CoFe-Sr3Fe1.25Mo0.75O7−δ (CoFe-SFM) fuel electrode consisting of CoFe nanoparticles and Ruddlesden-Popper-layered Sr3Fe1.25Mo0.75O7−δ (SFM) from a Sr2Fe7/6Mo0.5Co1/3O6−δ (SFMCo) perovskite oxide after annealing in hydrogen and apply it to reversible CO/CO2 conversion in RSOC. The CoFe-SFM fuel electrode shows improved catalytic activity by accelerating oxygen diffusion and surface kinetics towards the CO/CO2 conversion as demonstrated by the distribution of relaxation time (DRT) study and equivalent circuit model fitting analysis. Furthermore, an electrolyte-supported single cell is evaluated in the 2:1 CO-CO2 atmosphere at 800°C, which shows a peak power density of 259 mW cm−2 for CO oxidation and a current density of −0.453 A cm−2 at 1.3 V for CO2 reduction, which correspond to 3.079 and 3.155 mL min−1 cm−2 for the CO and CO2 conversion rates, respectively. More importantly, the reversible conversion is successfully demonstrated over 20 cyclic electrolysis and fuel cell switching test modes at 1.3 and 0.6 V. This work provides a useful guideline for designing a fuel electrode through a surface/interface exsolution process for RSOC towards efficient CO-CO2 reversible conversion.

Originalspråkengelska
Sidor (från-till)1114-1126
Antal sidor13
TidskriftSCIENCE CHINA Materials
Volym64
Nummer5
DOI
StatusPublished - 2021 maj

Ämnesklassifikation (UKÄ)

  • Kemi

Fingeravtryck

Utforska forskningsämnen för ”Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här