Efficient Solvers for Minimal Problems by Syzygy-based Reduction

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

In this paper we study the problem of automatically generating
polynomial solvers for minimal problems. The main
contribution is a new method for finding small elimination
templates by making use of the syzygies (i.e. the polynomial
relations) that exist between the original equations. Using
these syzygies we can essentially parameterize the set
of possible elimination templates.
We evaluate our method on a wide variety of problems
from geometric computer vision and show improvement
compared to both handcrafted and automatically generated
solvers. Furthermore we apply our method on two previously
unsolved relative orientation problems.
Originalspråkengelska
Titel på värdpublikationIEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor2383 - 2392
Antal sidor10
ISBN (elektroniskt)978-1-5386-0457-1
ISBN (tryckt)978-1-5386-0458-8
DOI
StatusPublished - 2017 juli
EvenemangIEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 - e Hawaii Convention Center Honolulu, Hawaii., Honolulu, USA
Varaktighet: 2017 juli 212017 juli 26
http://cvpr2017.thecvf.com

Konferens

KonferensIEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
Förkortad titelCVPR
Land/TerritoriumUSA
OrtHonolulu
Period2017/07/212017/07/26
Internetadress

Ämnesklassifikation (UKÄ)

  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”Efficient Solvers for Minimal Problems by Syzygy-based Reduction”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här