Electronic structure of the [Ni(Salen)] complex studied by core-level spectroscopies

Gleb I. Svirskiy, Alexander V. Generalov, Nikolay A. Vinogradov, Xenia O. Brykalova, Anatoly V. Vereshchagin, Oleg V. Levin, Andrey G. Lyalin, Alexei B. Preobrajenski, Alexander S. Vinogradov

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review


The nature and structure of occupied and empty valence electronic states (molecular orbitals, MOs) of the [Ni(Salen)] molecular complex (NiO2N2C16H14) have been studied by X-ray photoemission and absorption spectroscopy combined with density functional theory (DFT) calculations. As a result, the composition of the high-lying occupied and low-lying unoccupied electronic states has been identified. In particular, the highest occupied molecular orbital (HOMO) of the complex is found to be predominantly located on the phenyl rings of the salen ligand, while the states associated with the occupied Ni 3d-derived molecular orbitals (MOs) are at higher binding energies. The lowest unoccupied molecular orbital (LUMO) is also located on the salen ligand and is formed by the 2pπ orbitals of carbon atoms in phenyl groups of the salen macrocycle. The unoccupied MOs above the LUMO reflect σ- and π-bonding between Ni and its nearest neighbours. All valence states have highly mixed character. The specific nature of the unoccupied Ni 3d-derived σ-MO is a consequence of donor-acceptor chemical bonding in [Ni(Salen)]. This journal is

Sidor (från-till)11015-11027
Antal sidor13
TidskriftPhysical Chemistry Chemical Physics
StatusPublished - 2021 maj 14

Ämnesklassifikation (UKÄ)

  • Atom- och molekylfysik och optik


Utforska forskningsämnen för ”Electronic structure of the [Ni(Salen)] complex studied by core-level spectroscopies”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här