Enclosure of the Numerical Range of a Class of Non-selfadjoint Rational Operator Functions

Christian Engström, Axel Torshage

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

In this paper we introduce an enclosure of the numerical range of a class of rational operator functions. In contrast to the numerical range the presented enclosure can be computed exactly in the infinite dimensional case as well as in the finite dimensional case. Moreover, the new enclosure is minimal given only the numerical ranges of the operator coefficients and many characteristics of the numerical range can be obtained by investigating the enclosure. We introduce a pseudonumerical range and study an enclosure of this set. This enclosure provides a computable upper bound of the norm of the resolvent.

Originalspråkengelska
Sidor (från-till)151-184
Antal sidor34
TidskriftIntegral Equations and Operator Theory
Volym88
Nummer2
DOI
StatusPublished - 2017 juni 1
Externt publiceradJa

Bibliografisk information

Publisher Copyright:
© 2017, The Author(s).

Ämnesklassifikation (UKÄ)

  • Matematisk analys

Fingeravtryck

Utforska forskningsämnen för ”Enclosure of the Numerical Range of a Class of Non-selfadjoint Rational Operator Functions”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här