TY - JOUR
T1 - Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei.
AU - Karlsson, Johan
AU - Momcilovic, Dane
AU - Wittgren, Bengt
AU - Schülein, Martin
AU - Tjerneld, Folke
AU - Brinkmalm, Gunnar
PY - 2002
Y1 - 2002
N2 - Enzymatic hydrolysis of carboxymethyl cellulose (CMC) has been studied with purified endoglucanases Hi Cel5A (EG II), Hi Cel7B (EG I), and Hi Cel45A (EG V) from Humicola insolens, and Tr Cel7B (EG I), Tr Cel12A (EG III), and Tr Cel45Acore (EG V) from Trichoderma reesei. The CMC, with a degree of substitution (DS) of 0.7, was hydrolyzed with a single enzyme until no further hydrolysis was observed. The hydrolysates were analyzed for production of substituted and non-substituted oligosaccharides with size exclusion chromatography (SEC) and with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS). Production of reducing ends and of nonsubstituted oligosaccharides was determined as well. The two most effective endoglucanases for CMC hydrolysis were Hi Cel5A and Tr Cel7B. These enzymes degraded CMC to lower molar mass fragments compared with the other endoglucanases. The products had the highest DS determined by MALDI-TOF-MS. Thus, Hi Cel5A and Tr Cel7B were less inhibited by the substituents than the other endoglucanases. The endoglucanase with clearly the lowest activity on CMC was Tr Cel45Acore. It produced less than half of the amount of reducing ends compared to Tr Cel7B; furthermore, the products had significantly lower DS. By MALDI-TOF-MS, oligosaccharides with different degree of polymerization (DP) and with different number of substituents could be separated and identified. The average oligosaccharide DS as function of DP could be measured for each enzyme after hydrolysis. The combination of techniques for analysis of product formation gave information on average length of unsubstituted blocks of CMC.
AB - Enzymatic hydrolysis of carboxymethyl cellulose (CMC) has been studied with purified endoglucanases Hi Cel5A (EG II), Hi Cel7B (EG I), and Hi Cel45A (EG V) from Humicola insolens, and Tr Cel7B (EG I), Tr Cel12A (EG III), and Tr Cel45Acore (EG V) from Trichoderma reesei. The CMC, with a degree of substitution (DS) of 0.7, was hydrolyzed with a single enzyme until no further hydrolysis was observed. The hydrolysates were analyzed for production of substituted and non-substituted oligosaccharides with size exclusion chromatography (SEC) and with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS). Production of reducing ends and of nonsubstituted oligosaccharides was determined as well. The two most effective endoglucanases for CMC hydrolysis were Hi Cel5A and Tr Cel7B. These enzymes degraded CMC to lower molar mass fragments compared with the other endoglucanases. The products had the highest DS determined by MALDI-TOF-MS. Thus, Hi Cel5A and Tr Cel7B were less inhibited by the substituents than the other endoglucanases. The endoglucanase with clearly the lowest activity on CMC was Tr Cel45Acore. It produced less than half of the amount of reducing ends compared to Tr Cel7B; furthermore, the products had significantly lower DS. By MALDI-TOF-MS, oligosaccharides with different degree of polymerization (DP) and with different number of substituents could be separated and identified. The average oligosaccharide DS as function of DP could be measured for each enzyme after hydrolysis. The combination of techniques for analysis of product formation gave information on average length of unsubstituted blocks of CMC.
KW - Spectrometry Mass Matrix-Assisted Laser Desorption-Ionization
KW - Hydrolysis
KW - Glycoside Hydrolases
KW - Fungal Proteins : metabolism
KW - Chromatography Gel
KW - Cellulase : metabolism
KW - Carboxymethylcellulose : chemistry : metabolism
KW - Biopolymers : metabolism
KW - Ascomycota : enzymology
KW - Biodegradation
KW - Substrate Specificity
KW - Support Non-U.S. Gov't
KW - Trichoderma : enzymology
U2 - 10.1002/bip.1060
DO - 10.1002/bip.1060
M3 - Article
C2 - 11754346
SN - 0006-3525
VL - 63
SP - 32
EP - 40
JO - Biopolymers
JF - Biopolymers
IS - 1
ER -