epsilon-Pisot numbers in any real algebraic number field are relatively dense

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

An algebraic integer is called an epsilon-Pisot number (epsilon > 0) if its Galois conjugates have absolute value less then epsilon. Let K be any real algebraic number field. We prove that the subset of K consisting of epsilon-Pisot numbers which have the same degree as that of the field is relatively dense in the real line R. This has some applications to non-stationary products of random matrices involving Salem numbers. (C) 2004 Elsevier Inc. All rights reserved.
Originalspråkengelska
Sidor (från-till)470-475
TidskriftJournal of Algebra
Volym272
Nummer2
DOI
StatusPublished - 2004

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”epsilon-Pisot numbers in any real algebraic number field are relatively dense”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här