Evaluation of some integrals relevant to multiple scattering by randomly distributed obstacles

Forskningsoutput: Bok/rapportRapportForskning

145 Nedladdningar (Pure)

Sammanfattning

This paper analyzes and solves an integral and its indefinite Fourier transform of importance in multiple scattering problems of randomly distributed scatterers.
The integrand contains a radiating spherical wave, and the two-dimensional domain of integration excludes a circular region of varying size.
A solution of the integral in terms of radiating spherical waves is demonstrated. The method employs the Erdelyi operators, which leads to a recursion relation. This recursion relation is solved in terms of a finite sum of radiating spherical waves.
The solution of the indefinite Fourier transform of the integral contains the indefinite Fourier transforms of the Legendre polynomials, which are solved by a recursion relation.
Originalspråkengelska
FörlagThe Department of Electrical and Information Technology
Antal sidor16
VolymTEAT-7228
StatusPublished - 2014

Publikationsserier

NamnTechnical Report LUTEDX/(TEAT-7228)/1-16/(2014)
VolymTEAT-7228

Bibliografisk information

Published version: Journal of Mathematical Analysis and Applications, Vol. 432, No. 1, pp. 324-337, 2015.

Ämnesklassifikation (UKÄ)

  • Elektroteknik och elektronik

Fingeravtryck

Utforska forskningsämnen för ”Evaluation of some integrals relevant to multiple scattering by randomly distributed obstacles”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här