Evaluation of some integrals relevant to multiple scattering by randomly distributed obstacles

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

This paper analyzes and solves an integral and its indefinite Fourier transform of importance in multiple scattering problems of randomly distributed scatterers. The integrand contains a radiating spherical wave, and the two-dimensional domain of integration excludes a circular region of varying size. A solution of the integral in terms of radiating spherical waves is demonstrated. The method employs the Erdelyi operators, which leads to a recursion relation. This recursion relation is solved in terms of a finite sum of radiating spherical waves. The solution of the indefinite Fourier transform of the integral contains the indefinite Fourier transforms of the Legendre polynomials, which are solved by a closed formula.
Originalspråkengelska
Sidor (från-till)324-337
TidskriftJournal of Mathematical Analysis and Applications
Volym432
Nummer1
DOI
StatusPublished - 2015

Ämnesklassifikation (UKÄ)

  • Elektroteknik och elektronik

Fingeravtryck

Utforska forskningsämnen för ”Evaluation of some integrals relevant to multiple scattering by randomly distributed obstacles”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här