Exact buffer overflow calculations for queues via martingales

Sören Asmussen, M Jobmann, HP Schwefel

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Let tau(n) be the first time a queueing process like the queue length or workload exceeds a level n. For the M/M/1 queue length process, the mean Etaun and the Laplace transform Ee(-staun) is derived in closed form using a martingale introduced in Kella and Whitt (1992). For workload processes and more general systems like MAP/PH/1, we use a Markov additive extension given in Asmussen and Kella (2000) to derive sets of linear equations determining the same quantities. Numerical illustrations are presented in the framework of M/M/1 and MMPP/M/1 with an application to performance evaluation of telecommunication systems with long-range dependent properties in the packet arrival process. Different approximations that are obtained from asymptotic theory are compared with exact numerical results.
Originalspråkengelska
Sidor (från-till)63-90
TidskriftQueueing Systems
Volym42
Nummer1
DOI
StatusPublished - 2002

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Exact buffer overflow calculations for queues via martingales”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här