Exciton Binding Energy and the Nature of Emissive States in Organometal Halide Perovskites.

Kaibo Zheng, Qiushi Zhu, Mohamed Qenawy, Maria Messing, Wei Zhang, Alexander Generalov, Yuran Niu, Lynn Ribaud, Sophie E Canton, Tönu Pullerits

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

154 Citeringar (SciVal)

Sammanfattning

Characteristics of nanoscale materials are often different from the corresponding bulk properties providing new, sometimes unexpected, opportunities for applications. Here we investigate the properties of 8 nm colloidal nanoparticles of MAPbBr3 perovskites and contrast them to the ones of large microcrystallites representing a bulk. X-ray spectroscopies provide an exciton binding energy of 0.32 ± 0.10 eV in the nanoparticles. This is 5 times higher than the value of bulk crystals (0.084 ± 0.010 eV), and readily explains the high fluorescence quantum yield in nanoparticles. In the bulk, at high excitation concentrations, the fluorescence intensity has quadratic behavior following the Saha-Langmuir model due to the nongeminate recombination of charges forming the emissive exciton states. In the nanoparticles, a linear dependence is observed since the excitation concentration per particle is significantly less than one. Even the bulk shows linear emission intensity dependence at lower excitation concentrations. In this case, the average excitation spacing becomes larger than the carrier diffusion length suppressing the nongeminate recombination. From these considerations we obtain the charge carrier diffusion length in MAPbBr3 of 100 nm.
Originalspråkengelska
Sidor (från-till)2969-2975
TidskriftThe Journal of Physical Chemistry Letters
Volym6
Utgåva15
DOI
StatusPublished - 2015

Bibliografisk information

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Solid State Physics (011013006), Synchrotron Radiation Research (011013009), Chemical Physics (S) (011001060), Max-laboratory (011012005)

Ämnesklassifikation (UKÄ)

  • Fysikalisk kemi

Fingeravtryck

Utforska forskningsämnen för ”Exciton Binding Energy and the Nature of Emissive States in Organometal Halide Perovskites.”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här