Exponential moments for disk counting statistics of random normal matrices in the critical regime

Christophe Charlier, Jonatan Lenells

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We obtain large n asymptotics for the m-point moment generating function of the disk counting statistics of the Mittag-Leffler ensemble, where n is the number of points of the process and m is arbitrary but fixed. We focus on the critical regime where all disk boundaries are merging at speed n − 1 2 , either in the bulk or at the edge. As corollaries, we obtain two central limit theorems and precise large n asymptotics of all joint cumulants (such as the covariance) of the disk counting function. Our results can also be seen as large n asymptotics for n × n determinants with merging planar discontinuities.

Originalspråkengelska
TidskriftNonlinearity
Volym36
Nummer3
DOI
StatusPublished - 2023 mars 1

Ämnesklassifikation (UKÄ)

  • Matematisk analys

Fingeravtryck

Utforska forskningsämnen för ”Exponential moments for disk counting statistics of random normal matrices in the critical regime”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här