Exponential splitting for unbounded operators

Eskil Hansen, Alexander Ostermann

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We present a convergence analysis for exponential splitting methods applied to linear evolution equations. Our main result states that the classical order of the splitting method is retained in a setting of unbounded operators, without requiring any additional order condition. This is achieved by basing the analysis on the
abstract framework of (semi)groups. The convergence analysis also includes generalizations to splittings consisting of more then two operators, and to variable time steps. We conclude by illustrating that the abstract results are applicable in the context of the Schrödinger equation with an external magnetic field or with an
unbounded potential.
Originalspråkengelska
Sidor (från-till)1485-1496
TidskriftMathematics of Computation
Volym78
Nummer267
DOI
StatusPublished - 2009
Externt publiceradJa

Ämnesklassifikation (UKÄ)

  • Elektroteknik och elektronik

Fingeravtryck

Utforska forskningsämnen för ”Exponential splitting for unbounded operators”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här